# Defensive Info Operations - Part I Data Security \& Cryptology 

Hüseyin Hışıl

Computer Engineering Department
Engineering Faculty
Yaşar University

22 April 2012 / İzmir

# Acknowledgement: Some of the slides are compiled from Dr. Koltuksuz's lecture notes. 

## Possible Data Security Threats

Threat is a potential violation of security.


## Layers of Defensive Data Security



## Essential Services for Data Security \& Network Security

- Availability:
- Ensures that data remain to be sucessfully accessible. (Networking)
- Interruption targets availability.
- Authentication:
- Ensures that data really were sent by the claimed sender. (Cryptology)
- Fabrication targets authentication.
- Confidentiality:
- Ensures that data are accessed only by authorized parties. (Cryptology)
- Interception targets confidentiality.
- Integrity:
- Ensures that the original data is intact. (Coding Theory)
- Modification targets integrity.

Note: Higher level services such as non-repudiation, access control, utility, possession, can be defined as needed.

## The World of Crypto

- Cryptography: The science of securing data.
- Cryptanalysis: The science of defeating cryptographic security.
- Coding theory: The science of converting the representation of data.
- Cryptology $=$ Cryptography + Cryptanalysis $\pm$ Coding theory.
- (Cryptology) $\sim($
(Logic) $\wedge$
(Mathematics) $\wedge$
(Computer science)
(Computer engineering) $\wedge$
(Electrical \& Electronics engineering)





## The Archaic Ciphers - Selected Examples

- Ancient Greeks and Romans
- 475 B.C. Spartans - Scytale Cipher.
- 60 B.C. Julius Caesar - Substitution Cipher.
- Middle Ages

- 1378-1417 Gabriele de Lavinde of Parma
- Renaissance
- 1518 Johannes Trithemius: "Polygraphiae" (Steganographia), first printed work!
- $20^{\text {th }}$ Century
- 1917 Zimmermann Telegramme (codebooks)
- 1926 Vernam, "one-time-pad"
- 1939-1945 2 ${ }^{\text {nd }}$ World War: "Enigma" - "Purple"


## Zimmermann Telegramme



4 $\square>$ 司








- Obtaing the ciphertext: $E\left(m, k_{A}\right)=c$.
- Recovering the plaintext: $D\left(c, k_{B}\right)=m$.

- Obtaing the ciphertext: $E\left(m, k_{A}\right)=c$.
- Recovering the plaintext: $D\left(c, k_{B}\right)=m$.
- Symmetric Key Cryptography: $k_{A}=k_{B}$.

- Obtaing the ciphertext: $E\left(m, k_{A}\right)=c$.
- Recovering the plaintext: $D\left(c, k_{B}\right)=m$.
- Symmetric Key Cryptography: $k_{A}=k_{B}$. (Shared / Secret Key Cry.)

- Obtaing the ciphertext: $E\left(m, k_{A}\right)=c$.
- Recovering the plaintext: $D\left(c, k_{B}\right)=m$.
- Symmetric Key Cryptography: $k_{A}=k_{B}$. (Shared / Secret Key Cry.)
- Asymmetric Key Cryptography: $k_{A} \neq k_{B}$.

- Obtaing the ciphertext: $E\left(m, k_{A}\right)=c$.
- Recovering the plaintext: $D\left(c, k_{B}\right)=m$.
- Symmetric Key Cryptography: $k_{A}=k_{B}$. (Shared / Secret Key Cry.)
- Asymmetric Key Cryptography: $k_{A} \neq k_{B}$. (Public Key Cry.)

- Obtaing the ciphertext: $E\left(m, k_{A}\right)=c$.
- Recovering the plaintext: $D\left(c, k_{B}\right)=m$.
- Symmetric Key Cryptography: $k_{A}=k_{B}$. (Shared / Secret Key Cry.)
- Asymmetric Key Cryptography: $k_{A} \neq k_{B}$. (Public Key Cry.)
- Cryptanalysis: Given $c, E, D$, find $m$.


## Brute force attacks

Try all possible keys!

- 1-bit key: You have $2^{2}=2$ keys; one or the other
- 2-bit key: You have $2^{4}=4$ keys: one of the four
- 3-bit key: You have $2^{3}=8$ keys: one of the eight
- 4-bit key: You have $2^{4}=16$ keys: one of the sixteen
- 256-bit key: You have $2^{256}=$

115792089237316195423570985008687907853269984665640564039457584007913129639936
$\approx 3671743063080802746815416825491118336290905145409708398004109 \cdot 365 \cdot 24 \cdot 60 \cdot 60 \cdot 10^{9}$
keys!!!

## Contemporary Ciphers: Early Years

- 1971 IBM announces Lucifer, A Block cipher
- 1975 IBM offers Lucifer as a standard
- 1976 Diffie \& Hellman, Public Key concept
- 1977 Lucifer gets approved by NIST as Data Encryption Standard (DES), a Block Cipher
- 1978 Rivest-Shamir-Adleman (RSA), Public Key Cryptosystem
- 1984 Shamir, Identity Based Cryptography
- 1985 Elliptic Curve Cryptograpgy (ECC)
- 1987 Stream cipher RC4
- 2001 Advanced Encryption Standard (AES)
- 2001 Boneh \& Franklin, Identity Based Cryptography is feasible!


## A Basic Taxonomy

- Symmetric systems
- Block ciphers: DES, 3DES, IDEA, BLOWFISH, TWOFISH, AES, ...
- Stream ciphers: RC4, Dragon, HC-256, MICKEY, MOUSTIQUE, ...
- Asymmetric systems:
- Key exchange: DH
- Encryption/Decryption: RSA, ELGAMAL, ECC, NTRU
- Digital Signature: DSA, ECDSA


## Data Encryption Standard (DES)



- Obtaing the ciphertext: $E(m, k)=c$.
- Recovering the plaintext: $D(c, k)=m$.


## Data Encryption Standard (DES)



## Data Encryption Standard (DES) / Rounds Overview



## Data Encryption Standard (DES) / Initial \& Final Permutation



## Data Encryption Standard (DES) / Initial \& Final Permutation

| Initial Permutation | Final Permutation |
| :---: | :---: |
| $\begin{array}{llllllll}58 & 50 & 42 & 34 & 26 & 18 & 10 & 02\end{array}$ | 4008481656246432 |
|  | $39074715 \begin{array}{lllllll}39 & 23 & 63 & 31\end{array}$ |
|  | 3806461454226230 |
|  | $\begin{array}{lllllllll}37 & 05 & 45 & 13 & 53 & 21 & 61 & 29\end{array}$ |
| $\begin{array}{lllllllll}57 & 49 & 41 & 33 & 25 & 17 & 09 & 01\end{array}$ | 3604441252206028 |
| $\begin{array}{llllllllll}59 & 51 & 43 & 35 & 27 & 19 & 11 & 03\end{array}$ |  |
| $\begin{array}{llllllllll}61 & 53 & 45 & 37 & 29 & 21 & 13 & 05\end{array}$ |  |
| $6355473931 \quad 231507$ | 3301410949175725 |

## Data Encryption Standard (DES) / Encryption \& Decryption



## Data Encryption Standard (DES) / Encryption \& Decryption



## Data Encryption Standard (DES) / The function $f\left(R_{i-1}, K_{i}\right)$



Figure 2.4 Single Round of DES Algorithm

## Data Encryption Standard (DES) / The function $f\left(R_{i-1}, K_{i}\right)$

EXPANSION PERMUTATION (32 -> 48): 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, $10,11,12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,22,23,24$ $25,24,252627,28,29,2829,30,31,32,1$.

P-BOX PERMUTATION (56-> 48): 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, $5,18,31,10,2,8,24,14,32,27,3,9,19,13,30,6,22,11,4,25$.

## Data Encryption Standard (DES) / The function $f\left(R_{i-1}, K_{i}\right)$

S-BOX-1 to S-BOX-8 (6 -> 4): The fist two bits determine the row; the next four bits determines the column.

$$
\begin{aligned}
& 14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7 \\
& 0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8 \text {, } \\
& 4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0 \\
& 15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13 . \\
& 15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10 \text {, } \\
& 3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5 \text {, } \\
& 0,14,7,11,10,4,13,1,5,8,12,6,9,3,12,15 \text {, } \\
& 13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9 \text {. } \\
& 10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8 \text {, } \\
& 13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1 \text {, } \\
& 13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7 \\
& 1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12 . \\
& 7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15 \text {, } \\
& 13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9 \\
& 10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4 \text {, } \\
& 3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14 .
\end{aligned}
$$

$2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9$, $14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6$, $4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14$, $11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3$.
$12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11$, $10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8$, $9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6$, $4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13$.
$4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1$, $13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6$, $1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2$, $6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12$.
$13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7$, $1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2$, $7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8$, $2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11$.

## Data Encryption Standard (DES) / Key Scheduling

Shifting

| Rounds | Shift |
| :---: | :---: |
| $1,2,9,16$ | one bit |
| Others | two bits |



## Data Encryption Standard (DES) / Key Scheduling

KEY PERMUTATION (64 -> 56): 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, $18,10,2,59,51,43352719,11,3,60,52,44,36,63,55,4739,31,23,15$, $7,62,54,46,38,30,22,1,6,61,53,45,37,29,21,13,5,28,20,12,4$.

KEY SHIFTS PER ROUND

| Round | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# of shifts | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |

COMPRESSION PERMUTATION (56-> 48): 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, $21,10,23,19,12,4,26,8,16,7,27,20,13,2,41,52,3137,47,55,30,40$, $51,45,33,48,44,49,3956,34,53,46,42,50,36,29,32$.

## The RSA algorithm



## The RSA algorithm

(1) Bob chooses primes $p$ and $q$. Computes $n=p \cdot q$.


## The RSA algorithm

(1) Bob chooses primes $p$ and $q$. Computes $n=p \cdot q$.
(2) Bob chooses $e$ with $\operatorname{GCD}(e,(p-1) \cdot(q-1))=1$.

$(4)$

## The RSA algorithm

(1) Bob chooses primes $p$ and $q$. Computes $n=p \cdot q$.
(2) Bob chooses $e$ with $\operatorname{GCD}(e,(p-1) \cdot(q-1))=1$.
(3) Bob computes $d$ with $d \cdot e \equiv 1 \bmod (p-1) \cdot(q-1)$.


## The RSA algorithm

(1) Bob chooses primes $p$ and $q$. Computes $n=p \cdot q$.
(2) Bob chooses $e$ with $\operatorname{GCD}(e,(p-1) \cdot(q-1))=1$.
(3) Bob computes $d$ with $d \cdot e \equiv 1 \bmod (p-1) \cdot(q-1)$.


## RSA in action

Alice wants to send a message $m$ to Bob:
Let $m=$ "Hello" $=\mathbf{0 x 4 8 6 5 6 C 6 C 6 F}=310939249775$.

## RSA in action

Alice wants to send a message $m$ to Bob:

$$
\text { Let } m=\text { "Hello" }=0 \times 48656 \text { C6C } 6 F=310939249775 \text {. }
$$

(1) Bob chooses primes $p=1048583, q=2097211$ and computes $n=p \cdot q=2199099802013$.

## RSA in action

Alice wants to send a message $m$ to Bob:

$$
\text { Let } m=\text { "Hello" }=0 \times 48656 \text { C6C } 6 F=310939249775 \text {. }
$$

(1) Bob chooses primes $p=1048583, q=2097211$ and computes $n=p \cdot q=2199099802013$.
(2) Bob chooses $e=1644903229909$ with $\operatorname{GCD}(e,(p-1) \cdot(q-1))=1$.

## RSA in action

Alice wants to send a message $m$ to Bob:

$$
\text { Let } m=\text { "Hello" }=0 \times 48656 \text { C6C } 6 F=310939249775 \text {. }
$$

(1) Bob chooses primes $p=1048583, q=2097211$ and computes $n=p \cdot q=2199099802013$.
(2) Bob chooses $e=1644903229909$ with $\operatorname{GCD}(e,(p-1) \cdot(q-1))=1$.
(3) Bob computes $d=2055797390629$ with $d \cdot e \equiv 1 \bmod (p-1) \cdot(q-1)$.

## RSA in action

Alice wants to send a message $m$ to Bob:

$$
\text { Let } m=\text { "Hello" }=\mathbf{0 x 4 8 6 5 6 C 6 C 6 F}=310939249775 .
$$

(1) Bob chooses primes $p=1048583, q=2097211$ and computes $n=p \cdot q=2199099802013$.
(2) Bob chooses $e=1644903229909$ with $\operatorname{GCD}(e,(p-1) \cdot(q-1))=1$.
(3) Bob computes $d=2055797390629$ with $d \cdot e \equiv 1 \bmod (p-1) \cdot(q-1)$.

Alice gets $\{e, n\}$ from Bob, computes \& sends the ciphertext $c$ :

$$
\begin{aligned}
c \equiv m^{e} & \equiv 310939249775^{1644903229909} \quad(\bmod 2199099802013) . \\
& \equiv 858640968629 \quad(=\text { "Çéık\&") }
\end{aligned}
$$

## RSA in action

Alice wants to send a message $m$ to Bob:

$$
\text { Let } m=\text { "Hello" }=\mathbf{0 x 4 8 6 5 6 C 6 C 6 F}=310939249775 .
$$

(1) Bob chooses primes $p=1048583, q=2097211$ and computes $n=p \cdot q=2199099802013$.
(2) Bob chooses $e=1644903229909$ with $\operatorname{GCD}(e,(p-1) \cdot(q-1))=1$.
(3) Bob computes $d=2055797390629$ with $d \cdot e \equiv 1 \bmod (p-1) \cdot(q-1)$.

Alice gets $\{e, n\}$ from Bob, computes \& sends the ciphertext $c$ :

$$
\begin{aligned}
c \equiv m^{e} & \equiv 3109392497755^{1644903229909} \quad(\bmod 2199099802013) . \\
& \equiv 858640968629 \quad(=\text { "Çéık\&")}
\end{aligned}
$$

Bob receives the ciphertext $c$ and decrypt it using $\{\mathrm{d}, \mathrm{n}\}$ :

$$
\begin{aligned}
m \equiv c^{d} & \equiv 858640968629^{2055797390629} \\
& \equiv 310939249775 \quad(=\text { "Hello" })
\end{aligned}
$$



## How does the RSA decryption works?

Definition (Euler's totient function)
Let $n$ be an integer.
$\phi(n):=$ "The number of integers $1 \leq a \leq n$ such that $\operatorname{GCD}(a, n)=1 "$.

## Lemma

$\phi(n)=\phi(p \cdot q)=(p-1) \cdot(q-1)$.

## Theorem <br> If $\operatorname{GCD}(a, n)=1$ then $a^{\phi(n)} \equiv 1 \bmod n$.

Now,

$$
c^{d} \equiv\left(m^{e}\right)^{d} \equiv m^{1+k \cdot \phi(n)} \equiv m \cdot\left(m^{\phi(n)}\right)^{k} \equiv m \cdot 1^{k} \equiv m \quad \bmod n .
$$

## A 1024-bit RSA Key Pair

- $\{e, n\}$ is Bob's public key.
- $\{d, n\}$ is Bob's private key.
- A 1024-bit real life example for $\{e, n\}$ and $\{d, n\}$ :


#### Abstract

-----BEGIN RSA PUBLIC KEY----$9890358544074759938419132025595418965631814812208902128565778086030909986482141 \backslash$ $6107606677891053673705103883999977772945537404517448724335003773341663971185053 \backslash$ $3929384596076971241098415689496946973867855393333764172131342591818051660324062 \backslash$ 45222901052655658864834767970920620388112647887462884678332032659652219 , $1043897942152367749063825229532206552165453572106052293131141389727160036602268 \backslash$ $0870577201749139894975381794498863821800339283339327391809759197322965090615149 \backslash$ $2036283684952106999146787504059281793179164401287114643529124133101048464873353 \backslash$ 379143814555782200398541033767207431591494573326249618226537229627343777 -----END RSA PUBLIC KEY----- -----BEGIN RSA PRIVATE KEY----- $6089688501114155163832462683513920608181891697693839487794237843836325439768848 \backslash$ $9660442641216096036102119822862794064442243247504385197420907304692627164319154 \backslash$ $6255505123048564107781992713491069414756062991942745481325357460920118566695887 \backslash$ 62245250917000857972663950122866918298228262765504545753858789463498444 , $1043897942152367749063825229532206552165453572106052293131141389727160036602268 \backslash$ $0870577201749139894975381794498863821800339283339327391809759197322965090615149 \backslash$ $2036283684952106999146787504059281793179164401287114643529124133101048464873353 \backslash$ 379143814555782200398541033767207431591494573326249618226537229627343777 -----END RSA PRIVATE KEY-----



๑)

## Threats against RSA



## What can Eve do?

- Eve can intercept $n, e, c$.
- Eve does not know $p, q, d$.
- Eve cannot factor n. (assumption)


## Group

A set $G$


## Group

## Definition

A group is a pair $(G,+)$ consisting of a nonempty set $G$ and a binary operation + , (closed) on $G$, such that $(\forall P, Q, R \in G)$

- Binary operation is associative; $(P+Q)+R=P+(Q+R)$,
- A unique identity exists; $0+P=P+0=P$,
- Every element has a unique inverse; $P+Q=Q+P=0$.

Furthermore, $(G,+)$ is abelian if $P+Q=Q+P \quad \forall P, Q \in G$.

## Examples

- $\mathbb{Z} / p \mathbb{Z}$ is an abelian group. (Simply "mod $p$ " arithmetic)
- An elliptic curve is a group. (We will define this later)


## Subgroup

$H$ is a subset of $G$

$H \subset G$

+|  |  |  |  |
| :--- | :--- | :--- | :--- |
| + | 0 | 3 | 6 |
| 0 | 0 | 3 | 6 |
| 3 | 3 | 6 | 0 |
| 6 | 6 | 0 | 3 |

## Check

- Closed
- Identity
- Inverses
- Associativity


## Subgroup

## Definition

A subset $H$ of a group $G$ which is

- closed under the binary operation of $G$,
- a group itself,
is called a subgroup of $G$. $(H \subseteq G)$


## Cyclic (Sub)group, Generator

## Definition

Let $P \in G$, then

$$
H=\{n P=\underbrace{P+P+\ldots+P}_{n \text { times }} \mid n \in \mathbb{Z}\}
$$

is the cyclic subgroup of $G$ generated by $P . \quad(H=\langle P\rangle)$

## Cyclic (Sub)group, Generator

## Definition

Let $P \in G$, then

$$
H=\{n P=\underbrace{P+P+\ldots+P}_{n \text { times }} \mid n \in \mathbb{Z}\}
$$

is the cyclic subgroup of $G$ generated by $P . \quad(H=\langle P\rangle)$

## Remark

- If an element $P \in G$ generates $G$, then $P$ is a generator for $G$.

$$
(G=\langle P\rangle)
$$

- $G$ is a cyclic group if there is some element $P \in G$ that generates $G$.
- The number of elements in $\langle P\rangle$ is called the order of $P$ and is denoted by $|\langle P\rangle|$.


## Cyclic (Sub)group, Generator

Consider integers modulo 8.


6 is not a generator for $G$.


5 is a generator for $G . \quad G=\langle 5\rangle$
$+5$


## Discrete Logarithm Problem

- Let $(G,+)$ be a cyclic group of order $n$ and let $P$ be a generator of $G$.
- Given $Q \in G$ find the unique $k$ such that $0 \leq k \leq n-1$ and $Q=k P$.
- Finding $k$ is called Discrete Logarithm Problem (DLP).
- The complexity of DLP depends on the selection of the group $G$.

Note: If the group is written multiplicatively, the notation is changed to $Q=P^{k}$.

## Diffie Hellman Key Exchange (DH)

(1) Either Alice or Bob picks a prime $p$ and a generator $\alpha$.
(2) Alice makes makes $p$ and $\alpha$ public.

## Diffie Hellman Key Exchange (DH)

(1) Either Alice or Bob picks a prime $p$ and a generator $\alpha$.
(2) Alice makes makes $p$ and $\alpha$ public.
(3) Alice chooses a secret random $1 \leq x \leq p-2$.
(9) Bob chooses a secret random $1 \leq y \leq p-2$.

## Diffie Hellman Key Exchange (DH)

(1) Either Alice or Bob picks a prime $p$ and a generator $\alpha$.
(2) Alice makes makes $p$ and $\alpha$ public.
(3) Alice chooses a secret random $1 \leq x \leq p-2$.
(9) Bob chooses a secret random $1 \leq y \leq p-2$.
(5) Alice sends $\alpha^{x} \bmod p$ to Bob.
(6) Bob sends $\alpha^{y} \bmod p$ to Alice.

## Diffie Hellman Key Exchange (DH)

(1) Either Alice or Bob picks a prime $p$ and a generator $\alpha$.
(2) Alice makes makes $p$ and $\alpha$ public.
(3) Alice chooses a secret random $1 \leq x \leq p-2$.
(9) Bob chooses a secret random $1 \leq y \leq p-2$.
(5) Alice sends $\alpha^{x} \bmod p$ to Bob.
(6) Bob sends $\alpha^{y} \bmod p$ to Alice.

- Alice calculates the shared secret as $K \equiv\left(\alpha^{y}\right)^{x} \bmod p$.
(3) Bob calculates the same shared secret as $K \equiv\left(\alpha^{x}\right)^{y} \bmod p$.


## Diffie Hellman Key Exchange (DH)

(1) Either Alice or Bob picks a prime $p$ and a generator $\alpha$.
(2) Alice makes makes $p$ and $\alpha$ public.
(3) Alice chooses a secret random $1 \leq x \leq p-2$.
(9) Bob chooses a secret random $1 \leq y \leq p-2$.
(5) Alice sends $\alpha^{x} \bmod p$ to Bob.
(6) Bob sends $\alpha^{y} \bmod p$ to Alice.

- Alice calculates the shared secret as $K \equiv\left(\alpha^{y}\right)^{x} \bmod p$.
(8) Bob calculates the same shared secret as $K \equiv\left(\alpha^{x}\right)^{y} \bmod p$.
- Though Eve may know $p, \alpha, \alpha^{x} \bmod p$ and $\alpha^{y} \bmod p$,
- She cannot recover $K$
- Unless she solves the DLP and finds out either $x$ or $y$.


## DH in action

(1) Alice picks a prime $p=558494556463$ and a generator $\alpha=197214177966$.

## DH in action

(1) Alice picks a prime $p=558494556463$ and a generator $\alpha=197214177966$.
(2) Alice makes makes $p$ and $\alpha$ public.

## DH in action

(1) Alice picks a prime $p=558494556463$ and a generator $\alpha=197214177966$.
(2) Alice makes makes $p$ and $\alpha$ public.
(3) Alice chooses a secret random $x=282910484039$ with $1 \leq x \leq p-2$.

## DH in action

(1) Alice picks a prime $p=558494556463$ and a generator $\alpha=197214177966$.
(2) Alice makes makes $p$ and $\alpha$ public.
(3) Alice chooses a secret random $x=282910484039$ with $1 \leq x \leq p-2$.
(9) Bob chooses a secret random $y=306801011233$ with $1 \leq y \leq p-2$.

## DH in action

(1) Alice picks a prime $p=558494556463$ and a generator $\alpha=197214177966$.
(2) Alice makes makes $p$ and $\alpha$ public.
(3) Alice chooses a secret random $x=282910484039$ with $1 \leq x \leq p-2$.
(3) Bob chooses a secret random $y=306801011233$ with $1 \leq y \leq p-2$.
(天) Alice sends $\alpha^{x} \equiv 197214177966^{282910484039} \equiv 542167786127 \bmod p$.

## DH in action

(1) Alice picks a prime $p=558494556463$ and a generator $\alpha=197214177966$.
(2) Alice makes makes $p$ and $\alpha$ public.
(3) Alice chooses a secret random $x=282910484039$ with $1 \leq x \leq p-2$.
(3) Bob chooses a secret random $y=306801011233$ with $1 \leq y \leq p-2$.
(5) Alice sends $\alpha^{x} \equiv 197214177966^{282910484039} \equiv 542167786127 \bmod p$.
(6) Bob sends $\alpha^{y} \equiv 197214177966^{306801011233} \equiv 416704295064 \bmod p$.

## DH in action

(1) Alice picks a prime $p=558494556463$ and a generator $\alpha=197214177966$.
(2) Alice makes makes $p$ and $\alpha$ public.
(3) Alice chooses a secret random $x=282910484039$ with $1 \leq x \leq p-2$.
(3) Bob chooses a secret random $y=306801011233$ with $1 \leq y \leq p-2$.
(5) Alice sends $\alpha^{x} \equiv 197214177966^{282910484039} \equiv 542167786127 \bmod p$.
(6) Bob sends $\alpha^{y} \equiv 197214177966^{306801011233} \equiv 416704295064 \bmod p$.
( Alice: $K \equiv\left(\alpha^{y}\right)^{x} \equiv 416704295064^{282910484039} \equiv 306801011233 \bmod p$.

## DH in action

(1) Alice picks a prime $p=558494556463$ and a generator $\alpha=197214177966$.
(2) Alice makes makes $p$ and $\alpha$ public.
(3) Alice chooses a secret random $x=282910484039$ with $1 \leq x \leq p-2$.
(3) Bob chooses a secret random $y=306801011233$ with $1 \leq y \leq p-2$.
(5) Alice sends $\alpha^{x} \equiv 197214177966^{282910484039} \equiv 542167786127 \bmod p$.
( Bob sends $\alpha^{y} \equiv 197214177966^{306801011233} \equiv 416704295064 \bmod p$.
(1) Alice: $K \equiv\left(\alpha^{y}\right)^{x} \equiv 416704295064^{282910484039} \equiv 306801011233 \bmod p$.
(8) Bob: $K \equiv\left(\alpha^{x}\right)^{y} \equiv 542167786127^{306801011233} \equiv 306801011233 \bmod p$.

## ElGamal

As usual Alice wants to send a message to Bob.

- Let $G=\langle P\rangle$ be a cyclic group.
- Bob's public key is $Q=k P$.
- Bob's private key is $k$.
- Plaintext is $M \in G$.

Alice performs:
ElGamal Encryption
input : $Q, M$.
output : $\left\{C_{0}, C_{1}\right\}$.
Select a random $r, 0<r<|\langle P\rangle|$.
Compute $C_{0}=r P$.
Compute $C_{1}=M+r Q$.
return $\left\{C_{0}, C_{1}\right\}$. (The ciphertext)

Bob performs:
ElGamal Decryption
input : $k,\left\{C_{0}, C_{1}\right\}$.
output : $M$.
Compute $M=C_{1}-k C_{0}$.
return $M$.

## ElGamal

How does the encryption works?

- We have the relation $Q=k P$.
- Encryption is $C_{1}=(M+r Q), \quad C_{0}=(r P)$.
- Decryption is $M=\left(C_{1}-k C_{0}\right)$.
- So, decryption corresponds to

$$
\left\{\begin{array}{l}
C_{1}-k C_{0}= \\
(M+r Q)-k(r P)= \\
M+r Q-r(k P)= \\
M+r Q-r Q= \\
M
\end{array}\right.
$$

## Elliptic Curves

## Definition (A simplified non-technical version)

Let $p>2$ be a prime. Let $A, B$ be integers satisfying

$$
0 \leq A<p, \quad 0 \leq B<p, \quad 4 A^{3}+27 B^{3} \not \equiv 0 \quad \bmod p .
$$

An elliptic curve is the set of points
$E:=\left\{(x, y) \mid(0 \leq x<p)\right.$ and $(0 \leq y<p)$ and $\left.\left(y^{2} \equiv x^{3}+A x+B \quad \bmod p\right)\right\}$ together with a distinguished point $\mathscr{O}$ (the point at infinity).

- We have a set of points.
- Our goal is to form a group.
- All we need is a binary operation!


## Elliptic Curves / The Group Law

Bezout's Theorem (A simplified non-technical version)
Two curves of degree $m$ and $n$ intersect in $m n$ points.

## Remark

An elliptic curve and a line intersect at 3 points.

## Elliptic Curves / The Group Law

- We have a set of points.
- Our goal is to form a group.
- And the binary operation is:



## Elliptic Curves / The Group Law

With this binary operation;

- We select $\mathscr{O}$ as the identity element.
- The inverse of a point $(x, y)$ is $(x,-y)$.

$$
\begin{gathered}
y^{2}=x^{3}+A x+B \\
y= \pm \sqrt{x^{3}+A x+B}
\end{gathered}
$$

- The only axiom to check is the associativity, i.e.

$$
\left(P_{1}+P_{2}\right)+P_{3}=P_{1}+\left(P_{2}+P_{3}\right)
$$

## Elliptic Curves / The Group Law



## Elliptic Curves / Explicit Point Addition Formulae $\left(P_{1} \neq P_{2}\right)$



## Elliptic Curves / Explicit Point Addition Formulae $\left(P_{1} \neq P_{2}\right)$



## Elliptic Curves / Explicit Point Addition Formulae $\left(P_{1} \neq P_{2}\right)$

$\mathbf{L}: y=\lambda x+\beta$
where

$$
\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)
$$


$\mathrm{C}: y^{2}=x^{3}+A x+B \quad \longrightarrow \quad\left(x^{3}+A x+B-y^{2}\right)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x^{\prime}\right)$ $x^{3}+A x+B-(\lambda x+\beta)^{2}=x^{3}-\left(x_{1}+x_{2}+x^{\prime}\right) x^{2}+\left(x_{1} x_{2}+x_{2} x^{\prime}+x^{\prime} x_{1}\right) x-\left(x_{1} x_{2} x^{\prime}\right)$ $x^{3}-\lambda^{2} x^{2}+(A-2 \lambda \beta) x+\left(B-\beta^{2}\right)=x^{3}-\left(x_{1}+x_{2}+x^{\prime}\right) x^{2}+\left(x_{1} x_{2}+x_{2} x^{\prime}+x^{\prime} x_{1}\right) x-\left(x_{1} x_{2} x^{\prime}\right)$

## Elliptic Curves / Explicit Point Addition Formulae $\left(P_{1} \neq P_{2}\right)$

$\mathbf{L}: y=\lambda x+\beta$
where

$$
\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)
$$



$$
\mathbf{C}: y^{2}=x^{3}+A x+B \quad \longrightarrow \quad\left(x^{3}+A x+B-y^{2}\right)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x^{\prime}\right)
$$

## Elliptic Curves / Explicit Point Addition Formulae $\left(P_{1} \neq P_{2}\right)$

$\mathbf{L}: y=\lambda x+\beta$
where

$$
\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)
$$



$$
\begin{aligned}
& \mathbf{C}: y^{2}=x^{3}+A x+B \longrightarrow\left(x^{3}+A x+B-y^{2}\right)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x^{\prime}\right) \\
& x^{3}+A x+B-(\lambda x+\beta)^{2}=x^{3}-\left(x_{1}+x_{2}+x^{\prime}\right) x^{2}+\left(x_{1} x_{2}+x_{2} x^{\prime}+x^{\prime} x_{1}\right) x-\left(x_{1} x_{2} x^{\prime}\right) \\
& x^{3}-\lambda^{2} x^{2}+(A-2 \lambda \beta) x+\left(B-\beta^{2}\right)=x^{3}-\left(x_{1}+x_{2}+x^{\prime}\right) x^{2}+\left(x_{1} x_{2}+x_{2} x^{\prime}+x^{\prime} x_{1}\right) x-\left(x_{1} x_{2} x^{\prime}\right)
\end{aligned}
$$

## Elliptic Curves / Explicit Point Addition Formulae $\left(P_{1} \neq P_{2}\right)$

$$
\begin{aligned}
& \lambda^{2}=x_{1}+x_{2}+x^{\prime} \\
& x^{\prime}=\lambda^{2}-x_{1}-x_{2} \\
& x_{3}=x^{\prime}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}
\end{aligned}
$$



## Elliptic Curves / Explicit Point Addition Formulae $\left(P_{1} \neq P_{2}\right)$

$$
\begin{aligned}
& \lambda^{2}=x_{1}+x_{2}+x^{\prime} \\
& x^{\prime}=\lambda^{2}-x_{1}-x_{2}
\end{aligned}
$$

$$
x_{3}=x^{\prime}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}
$$


$\mathbf{L}: y=\lambda x+\beta$

$$
y_{3}=-y^{\prime}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x_{1}-x_{3}\right)-y_{1}
$$

## Elliptic Curves / Explicit Point Addition Formulae ( $P_{1}=P_{2}$ )

$$
\begin{aligned}
& x_{3}=\left(\frac{3 x_{1}^{2}+A}{2 y_{1}}\right)^{2}-2 x_{1} \\
& y_{3}=\left(\frac{3 x_{1}^{2}+A}{2 y_{1}}\right)\left(x_{1}-x_{3}\right)-y_{1}
\end{aligned}
$$

## Elliptic Curves / Explicit Point Addition $(P=-P)$



## Elliptic Curves / Explicit Point Addition $(P+\mathscr{O}=P)$



## Elliptic Curves / Complete Point Addition Algorithm

```
input : P}\mp@subsup{P}{1}{}=(\mp@subsup{x}{1}{},\mp@subsup{y}{1}{}),\mp@subsup{P}{2}{}=(\mp@subsup{x}{2}{},\mp@subsup{y}{2}{})\inE\operatorname{mod}p
output: }\mp@subsup{P}{1}{}+\mp@subsup{P}{2}{}=(\mp@subsup{x}{3}{},\mp@subsup{y}{3}{})\inE\operatorname{mod}p
if }\mp@subsup{P}{1}{}=\mathscr{O}\mathrm{ then return }\mp@subsup{P}{2}{}\mathrm{ .
else if P}\mp@subsup{P}{2}{}=\mathscr{O}\mathrm{ then return }\mp@subsup{P}{1}{}\mathrm{ .
else if }\mp@subsup{x}{1}{}=\mp@subsup{x}{2}{}\mathrm{ then
    if }\mp@subsup{y}{1}{}\not=\mp@subsup{y}{2}{}\mathrm{ then return }\mathscr{O}\mathrm{ .
        else if }\mp@subsup{y}{1}{}=0\mathrm{ then return }\mathscr{O}\mathrm{ .
        else
            x : = ((3\mp@subsup{x}{1}{2}+a)/(2\mp@subsup{y}{1}{})\mp@subsup{)}{}{2}-2\mp@subsup{x}{1}{}\operatorname{mod}p.
            y
                return ( }\mp@subsup{x}{3}{},\mp@subsup{y}{3}{})
    end
else
    x _ { 3 } : = ( ( y _ { 1 } - y _ { 2 } ) / ( x _ { 1 } - x _ { 2 } ) ) ^ { 2 } - x _ { 1 } - x _ { 2 } \operatorname { m o d } p .
```



```
    return (x }\mp@subsup{x}{3}{},\mp@subsup{y}{3}{})
end
```


## Elliptic Curves / A toy example

$E: y^{2}=x^{3}+77 x+92 \bmod 137$.
$4 A^{3}+27 B^{3} \equiv 67 \not \equiv 0 \bmod p$. So, $E$ is an elliptic curve.

- $\left(x_{1}, y_{1}\right)=(95,77)=P$ satisfies $E$.
- $(95,77)+(95,77)=(56,31)=2 P$
- $(56,31)+(95,77)=(98,67)=3 P$
- $(98,67)+(95,77)=(16,25)=4 P$


## ElGamal (Revisited)

As usual Alice wants to send a message to Bob.

- Let $G=\langle P\rangle$ be a cyclic group.
- Bob's public key is $Q=k P$.
- Bob's private key is $k$.
- Plaintext is $M \in G$.

Alice performs:
ElGamal Encryption
input : $Q, M$.
output : $\left\{C_{0}, C_{1}\right\}$.
Select a random $r, 0<r<|\langle P\rangle|$.
Compute $C_{0}=r P$.
Compute $C_{1}=M+r Q$.
return $\left\{C_{0}, C_{1}\right\}$. (The ciphertext)

Bob performs:
ElGamal Decryption
input : $k,\left\{C_{0}, C_{1}\right\}$.
output : $M$.
Compute $M=C_{1}-k C_{0}$.
return $M$.

## Thanks.

