
Özgür KAYA

Outline
� Motivation
� Core of Operating System : Kernel
� Kernel Components:

1. Memory Management
2. Process Management
3. System Calls

� Secure OS vs. OS Security
� Why do we need Antivirus / Firewalls ?
� Securing the Gates

� Information Flow
� Secure Models

� Conclusion

Motivation - Step 1

1. Operating system is a software program that enables the

computer hardware to communicate and operate with the computer software

Motivation - Step 2

2. Software has bugs that makes the program produce incorrect

results, behave in an undesired way, or simply crash/terminate unexpectedly.

Motivation - Step 3

3. Bugs may lead to vulnerabilities that can be exploited by

attackers

Motivation - Step 4

� Vulnerabilities should be defended againts attacks which may

gain privillages by figuring out how to take advantages of them

Core of Operating System: Kernel

� So… Where does security begin from ?

Application

Operating System

User

Hardware

APIs

File System

Kernel

Device Drivers

Program
Execution

Interrupts

Memory
Management

etc..

Operating System

Kernel

Kernel Overview

Common functions that can
be used by linked application

programs

Common functions that can
be used by linked application

programs

Provides the lowest-
level abstraction layer for the

resources

Provides the lowest-
level abstraction layer for the

resources

Entry points to the kernel
and are not linked to
application programs

Entry points to the kernel
and are not linked to
application programs

Kernel Components
1. Process management allows the execution of applications and support them

with features such as hardware abstractions.

� A process defines which memory portions the application can access.

2. Memory management must perform processes to safely access this memory
as they require it. Often the first step in doing this is virtual addressing, usually achieved by
paging and/or segmentation.

3. System calls is a mechanism that is used by the application program to
request a service from the operating system.

� It is impossible for a user process to call the kernel directly, because that would be
a violation of the processor's access control rules.

Page Number Frame Address

2 101

3 102

4 (P1) 101

5 103

Virtual Adress
Translation

InitP1

Example Scenario:

Running a program (in linux)

fork() vm_forkproc()

Secure OS vs OS Security
� Security Purposes

1. Autherization:

2. Authentication:

3. Integrity:

1. Is user X authorized to access
resource R?

1. Who is the user?
2. Is the user really who he/she

represents himself to be?

1. Ensuring that information is
not altered by unauthorized
persons

OS Security
� Application Level Solutions:

� Firewall is a software or hardware designed to permit or deny network
transmissions based upon a set of rules

� Antivirus software is used to prevent, detect, and remove malware,
including computer viruses, worms, and trojan horses..

� IDS is a device or software application that monitors network and/or
system activities for malicious activities or policy violations and
produces reports

OS Security
� Defending something vulnerable..

Security Reports-1
� From a November 4 article by Gregg Keizer’s on

ComputerWorld:

Microsoft has been extremely busy patching pieces of
the Windows kernel this year.

So far during 2011, Microsoft has patched 56
different kernel vulnerabilities with updates issued in
February, April, June, July, August and October. In April
alone, the company fixed 30 bugs, then quashed 15 more
in July

Security Reports-2
� Linux kernel vulnerabilities: State-of-the-art defenses

and open problems (2011) :

141 Linux kernel vulnerabilities discovered from January
2010 to March 2011

Secure Operating Systems

� So… Where does security begin from ?

Application

Operating System

User

Hardware

APIs

File System

Kernel

Device Drivers

Program
Execution

Interrupts

Memory
Management

etc..

Operating System

Kernel

Securing the Gates:

Access Control Models & Information

Flow

� ACM -> Deal with information flow

� Information Flow -> Confidentiality & Integrity (some
extend)

Information Control Model &

Policies

� Concerns with the flow of information from one
security class to another.

� Security Class: assigned to every object.

� Denning defined the concept of an Information flow
policy as follows...

Denning’s IFP
� Definition 1 [Information Flow Policy]

< SC, →, ⊕ >

SC set of security classes

→ ⊆ SC X SC flow relation (i.e., can-flow)

⊕: SC X SC -> SC class-combining operator

Denning’s IFP
� All three components of Information Flow Policy are

fixed.

� Allows objects to be created and destroyed
dynamically

� However, Security classes can not.

Example 1
� Isolated Class:

� No information flow is allowed from one SC to a
different SC.

� SC = {A1..An}; for i=1 to n we have Ai → Ai and Ai ⊕ Ai =

Ai; and for i,j = 1 to n, i != j we have Ai ! → Aj and Ai ⊕ Aj
is undefined

Example 2
� High Low Policy:

� All flows are allowed from Low to High

� SS = {H,L} and → {(H,H), (L,L), (L,H)} and join
operation is;

� H ⊕ H = H , L ⊕ L = L,

H ⊕ L = H, L ⊕ H = H

Denning’s IFP
� Definition 2 [Denning’s Axioms]

< SC, →, ⊕ >

1 SC is finite

2 → is a partial order on SC (reflexive, transitive, antisymmetric)

3 SC has a lower bound L such that L → A for all A ∈ SC

4 ⊕ is a least upper bound (lub) operator on SC

Justification for 1 and 2 is stronger than for 3 and 4. In
practice we may therefore end up with a partially ordered
set (poset) rather than a lattice.

Example 3
� Bounded Isolated Classes

� Example 1 fails by Axiom-4 (Ai ⊕ Aj is undefined)

� SC = {A1..An,L,H}; L → L , L → H , H → H than we
can show Ai ⊕ Aj = H

Denning’s IFP
� Definition 3 [Dominance]

� The dominance relation has the following significance:

� İf A>B then A ! → B but B → A

Lattice Structure
Hierarchical
Classes with

Compartments
TS

S

{A,B}

{}

{A} {B}

product of 2 lattices is a latticeproduct of 2 lattices is a lattice

Lattice Structure
Hierarchical
Classes with

Compartments

S,

{A,B}

{}

{A} {B}S, S,

S,

TS,

{A,B}

{}

{A} {B}TS, TS,

TS,

Lattice Structure
� Partial Order to Total Order

Access Control Models
� Subject / User

� Subject is a process that executes software behalf of User

� Each User has one unique ID, Where each subject is
associated with single user.

� Each user can have many subject concurrently running

� Different subject associated with the same user can
obtain different sets of access rights

Access Control Models
� Assume TS user «John» logs as S

� He can have subjects every level dominated by TS

� Access rights presented by an access matrix

� A Subject can also be object
� One process can execute/resume operations on another

process

Access Control Models
� Discretionary Access Control:

� Confidential user Tom wants Dick to read his file but not
Harry

� Tom enters access matrix: read in [Dick,File]

� Than Dick also can state the same for Harry

� What if Dick is not a cooperative ?

� Solution is to impose Mandatory Access Control

Bell-LaPadula Model
� The key idea in BLP is to augment DAC with MAC to

enfore information flow policy

� 2 step approach:
� DAM: modified by subjects

� MAC: users have no control
� Labels on subject: security clearence

� Labels on object: security classification

Bell-LaPadula Model
� Same user can have multiple subject access same file

with different previliges

� [Tranquility] The security labels on subjects and
objects can not be changed

Bell-LaPadula Model

Unclassified

Confidential

Secret

Top Secret

can-flowdominance
≥

Bell-LaPadula Model
SIMPLE-SECURITY No read up
Subject S can read object O only if

• label(S) dominates label(O) (TS can read S)

• information can flow from label(O) to label(S)

STAR-PROPERTY No write down
Subject S can write object O only if

• label(O) dominates label(S) (S can write TS)

• information can flow from label(S) to label(O)

Bell-LaPadula Model
� SS implies Humans and Programs equally

� Star implies not Humans But Programs

� Ex: TS user can write S object ?
� Star-Property prohibbits

� Need to log as S first

� No write down / No read up

Example
� Tom, Dick TS Users and have TS and S subjects

� Harry S User and only has S subjects.

� Tom create TS file with TS Subject
� SS property prohibits Harry’s Subject to read

� Even Dick has a Trojan Horse of Harry, Harry could
not read the copy of file

� Tranquility (most common): SECURE

label is static for subjects and objects

� High water mark on subjects: SECURE

label is static for objects

 label may increase but not decrease for subjects

� High water mark on objects: INSECURE

label is static for subjects

label may increase but not decrease for objects

Bell-LaPadula Model
� Mandatory Access Control for Trojan Horse is enough

?

� TS can not write S But !
� Assume TS acqure large memory
� S can always request memory allocation for himself..
� Result with give a hint!

� Covert Channel Problem considered by Information
Flow Models

Biba Model

� Biba proposed similar controls as BLP but for Integrity

� Information flows Top to Bottom

� There is no fundemental difference between Biba and
BLP

Biba Model

Garbage

Suspicious

Some Integrity

High Integrity

can-flowdominance
≥

Combining Biba and BLP
� Subject S can read object O only if conf(s) >= conf(o)

and int(s) <= int(o)

� Subject S can write object O only if conf(s) <= conf(o)
and int(s) >= int(o)

� By production of two lattices we can get a single lattice

Combining Biba and BLP

HS

LS

HI

LI

GIVENGIVEN

BLP BIBA

⇒

HS, LI

HS, HI LS, LI

LS, HI

EQUIVALENT BLP LATTICEEQUIVALENT BLP LATTICE

LIPNER'S LATTICE

Chinese Wall Lattice

� Example of a commercial security policy for
confidentiality

� Mixture of free choice (discretionary) and mandatory
controls

Example

BANKS
OIL

COMPANIES

A B X Y

ALL OBJECTS
CONFLICT OF INTEREST

CLASSES

COMPANY
DATASETS

A consultant can access information about at
most one company in each conflict of interest

class

A consultant can access information about at
most one company in each conflict of interest

class

Chinese Wall SIMPLE SECURITY
S can read O only if

• O is in the same company dataset as some object
previously read by S (i.e., O is within the wall)

or

• O belongs to a conflict of interest class within which S
has not read any object (i.e., O is in the open)

Chinese Wall STAR-PROPERTY
S can write O only if

• S can read O by the simple security rule

and

• no object can be read which is in a different company
dataset to the one for which write access is requested

Star Property Example

ALICE'S WALL BOB'S WALL

Bank A Bank B

Oil Company X Oil Company X

� cooperating Trojan Horses can
transfer Bank A information to
Bank B objects, and vice versa,
using Oil Company X objects as
intermediaries

Chinese Wall Conclusion
Either

• S cannot write at all

or

• S is limited to reading and writing one company
dataset

USERS, PRINCIPALS, SUBJECTS

ALICE
ALICE.BANK A

ALICE.OIL COMPANY X

ALICE.BANK A & OIL COMPANY X

ALICE.nothing

USERUSER PRINCIPALSPRINCIPALS

USERS, PRINCIPALS, SUBJECTS

JOE

JOE.TOP-SECRET

JOE.SECRET

JOE.UNCLASSIFIED

JOE.CONFIDENTIAL

USERUSER PRINCIPALSPRINCIPALS

� The Bell-LaPadula star-property is applied not to Joe
but rather to Joe's principals

� Similarly, the Chinese Wall star-property applies not
to Alice but to Alice's principals

Take – Grant Model

� Present a concrete example of protection system

� Completely analyze its behaviour in lineer time by
using Graph approach

Rule 1. Take

Rule 2. Grant

Rule 3. Create

Rule 4. Call

Rule 5. Remove

Example
� is it possible for y to read z?

Solution

Summary

Conclusion
� So long as Denning’s axioms are satisfied we will get a

lattice-based information flow policy

� One-directional information flow in a lattice can be
used for secrecy as well as for integrity but does not
solve either problem completely

� To properly understand and enforce Information
Security policies we must distinguish between

• policy applied to users, and

• policy applied to principals and subjects

� Teşekkürler

� Thank you

� Efcharisto Poly

� Muito Obrigado

� Danke Schön

� Bedankt

� Labai Aciu

