
Özgür KAYA

Outline
� Introduction

� Vulnarabilities
1. Memory Corruption

2. NULL Pointer

3. Race Conditions

� Shellcodes

� Remote Kernel Explotion

� Conclusion

Introduction
� 1994: The pentium processor computes wrong divisions

� INTEL forced to replace most processors
� Economic damage: 450 million Dollars !

� 1995: The software MacInTax spreads the secrets of US tax
payers

� Error in the debug code distributed
� Users can use it to access the server
� Everybody can read and modify any tax

Introduction (2)
� 1995: Problems in Denver Airport

� The fully automated baggage system fails
� Considerable congestion and lack of design
� The system is too complex to recover
� In 2005 system is still not be working

� 1996: Vector Ariane 5 explodes during take off

� The control software assigns a 64 bit number to a 16 bit variable
� The code was recycled from Ariane 4
� Ariane 5 is fast and its lateral speed does not fit in 16 bits
� Result: Overflow – system shuts down..
� The back up computer started
� .. But still the software is same
� Damage: 1 Billion Euros !

Introduction (3)

� Need to define what we want

� Need to prove properties rigorously

� Need modular verification techniques

� Need ways to automate the analysis

Security Reports-1
� From a November 4 article by Gregg Keizer’s on

ComputerWorld:

Microsoft has been extremely busy patching pieces of
the Windows kernel this year.

So far during 2011, Microsoft has patched 56
different kernel vulnerabilities with updates issued in
February, April, June, July, August and October. In April
alone, the company fixed 30 bugs, then quashed 15 more
in July

Security Reports-2
� Linux kernel vulnerabilities: State-of-the-art defenses

and open problems (2011) :

141 Linux kernel vulnerabilities discovered from January
2010 to March 2011

Page Number Frame Address

2 101

3 102

4 (P1) 101

5 103

Virtual Adress
Translation

InitP1

Example Scenario:

Running a program (in linux)

fork() vm_forkproc()

Secure Operating Systems

� So… Where does security begin from ?

Application

Operating System

User

Hardware

APIs

File System

Kernel

Device Drivers

Program
Execution

Interrupts

Memory
Management

etc..

Operating System

Kernel

Kernel Vulnerabilities
� Vulnerabilities (rows) vs. possible exploits (columns)

Some vulnerabilities allow for more than one kind of exploit, but
vulnerabilities that lead to memory corruption are not counted under other exploits.

Kernel Vulnerabilities
� Vulnerabilities (rows) vs. locations (columns)

From the source
� Following snippet of code taken from the 2.6.9 version

of the Linux Kernel

Uninitialized/Nonvalidated/Corrupted

Pointer Dereference

� Most famous kernel bug class:

� NULL pointer dereference (1)

Uninitialized/Nonvalidated/Corrupted

Pointer Dereference

� NULL pointer dereference vulnerabilities are a subset
of a larger class

� A static declared pointer is initialized to NULL

� what happens to a pointer declared as a local variable in
a function?

� what is the content of a pointer contained in a structure
freshly allocated in memory? (1)

Uninitialized/Nonvalidated/Corrupted

Pointer Dereference
� Pointer is a variable:

� it has a size
� needs to be stored in memory

The size of the pointer depends on the data model

Uninitialized/Nonvalidated/Corrupted

Pointer Dereference

� let’s say the ILP32 model is in place;

Is possible to predict the value
of that memory ?

Uninitialized/Nonvalidated/Corrupted

Pointer Dereference

vmsplice_to_user()

3

2

1

get_user() [1]
destination
pointer is
never validated
and is passed,

through [2]

This vulnerability allows a user to pass a kernel address
to the kernel, and therefore directly access (modify)

kernel memory.

Memory Corruption Vulnerabilities
� There are two basic types of kernel memory:

� the kernel stack:
� associated to each thread/process whenever it runs at the

kernel level

� The kernel heap:
� used each time a kernel path needs to allocate some small

object or some temporary space

� Misbehaving code that overwrites the kernel’s contents

Kernel Stack Vulnerabilities
� Comprise the growth direction

� either downward, from higher addresses to lower
addresses, or vice versa

� Register keeps track of its top address
� stack pointer

� Procedures interact with it
� how local variables are saved, how parameters are

passed, how nested calls are linked together, etc.Some operating systems, such as Linux, use so-called interrupt stacks. These are per-CPU
stacks that get used each time the kernel has to handle some kind of interrupt (in the Linux
kernel case, external hardware-generated interrupts). This particular stack is used to avoid

putting too much pressure on the kernel stack size in case small (4KB for Linux) kernel
stacks are used.

Kernel Stack Vulnerabilities
� Unsafe C functions, such as strcpy() or sprintf()

� An incorrect termination condition in a loop

potentially overwriting sensitive memory !

� Safe C functions, such as strncpy(), memcpy(),or
snprintf()
� incorrectly calculating the size of the destination buffer

Kernel Heap Vulnerabilities

� Kernel implements a virtual memory abstraction:
� creating the illusion of a large and independent virtual

address space for all the user-land processes
� indeed, for itself

� Using the physical page allocator for allocating space
for a large variety of small objects would be extremely
inefficient
� Fragmentation
� burden on the physical page allocator

Integer Issues
� Have a specific size which determines the range of

values
� Signed / Unsigned

� This kind of vulnerability is usually not exploitable!

� ..but it does lead to other vulnerabilities
� in most cases, memory overflows

(Arithmetic) Integer Overflows
� Undefined behavior:

� Integer overflows are the consequence of “wild”
increments/multiplications, generally due to a lack of
validation of the variables involved.
� As an example:

Integer overflow occurs when you attempt to store
inside an integer variable a value that is larger than the

maximum value the variable can hold

1

2

3

4

5

kaioc() is a system call of the
OpenSolaris kernel that
a user can call without any specific
privileges to manage asynchronous
I/O

At [2] nent variable is not checked
enough such as 0x3FFFFFFF > 0 and
passes the check

At [3] which will affect the «ssize»
depends on «nent»
on 32 bit systems likely to cause
overflow

Sign Conversion Issues
� Occur when the same value is erroneously evaluated

first as an unsigned integer and then as a signed one
(or vice versa)

� Same value differs in signed or unsigned

1

2

3

4

len [1] ,crom_buf->len
are of the signed
integer type

at [3] can be satisfied
by setting

crom_buf->len to a
negative value

int copyout(
const void * __restrict kaddr,
void * __restrict udaddr,
size_t len)

Size_t is an unsigned int < 0

this issue translates to
an arbitrary read of

kernel memory

Page Number Frame Address

2 101

3 102

4 (P1) 101

5 103

Virtual Adress
Translation

InitP1

Scenario:

Arbitrary Read of Kernel Memory

fork() vm_forkproc()

Sign Conversion Issues
� 1996: Vector Ariane 5 explodes during take off

� The control software assigns a 64 bit number to a 16 bit variable
� The code was recycled from Ariane 4
� Ariane 5 is fast and its lateral speed does not fit in 16 bits
� Result: Overflow – system shuts down..
� The back up computer started
� .. But still the software is same
� Damage: 1 Billion Euros !

� Aside from the C99 standard, a very good reference for helping
to understand these rules and related issues is the CERT Secure
Coding Standard

Race Conditions
� Occur:

� the (two or more) actors need to execute their action
concurrently (SMP)

� At least, be interleaved one with the other (UP) (1)

� Solution :
� Synchronization (synchronization primitives : e.g., locks,

semaphores, conditional variables, etc.) (2)

In recent years, race conditions have led to some of the most
fascinating bugs and exploits at the kernel level, among them
sys_uselib and the page fault handler issues on the Linux

kernel.

Page Fault Handler

1

2

3

4

Two threads racing to expand a common

VM_GROWSDOWN area.

Intermediate memory layout when thread B succeeds.

Final memory layout once thread A is also complete.

Page Number Frame Address

2 101

3 102

4 (P1) 101

5 103

Virtual Adress
Translation

Init

Scenario:

Arbitrary Read of Kernel Memory

fork() vm_forkproc()P1

37

Encountering new malware

Have I seen this before?

How closely related is it to
what I have seen before?

38

Practical considerations

?

New defense?

39

Theoretical considerations

?

?

Evolutionary
relationship?

40

Why shellcodes?
� Our study focuses on exploits

� They are packaged with the exploit
� First foreign code that executes on a newly infected

machine
� Part of exploit with most leeway for variation

� Primary challenge: collecting and analyzing shellcodes

41

Remote code injection attacks

Victim

Victim’s stack memory

high

low
MS RPC
Request
Exploit

Shellcode

Flow of execution

Decrypted
shellcode

Vulnerable
buffer

Why Remote Kernel Exploits?
� Instant root

� No need to escalate privileg

� Remote userland exploitation
� Full ASLR + NX/DEP

� Sandboxing

� Reduced privileges

Goals of This Talk
� Explore operating system internals from perspective of

an attacker

� Discuss kernel data structures and subsystems

� Exploit development methodology

� Individual bugs vs. exploit techniques

� Discuss next steps for kernel hardening

Challenges of Remote Kernel

Exploitation
� Consequence of failed remote userland exploit:

� Crash application/service, wait until restarted

� Crash child process, try again immediately

� Consequence of failed remote kernel exploit:
� Kernel panic, game over

Linux Networking
� What happens when network data is received?

� Hardware magic happens, driver layer (linux/drivers/net)
receives low-level frame

� Driver identifies “this is an IP packet”, sends to network
layer (linux/net/ipv{4,6})

� Network layer checks “what protocol is this” (TCP, UDP,
ICMP, etc.) and dispatches to appropriate protocol handler
(linux/net/*)

What Can We Achieve?
� Trigger the overflow, gain control of EIP

� Leverage ROP to mark softirq stack executable, jump into
shellcode

� Search for intact ROSE frame on kernel heap, mark
executable, jump into it

� Install kernel backdoor by hooking ICMP handler

� Do some necessary cleanup and unwind stack for safe
return from softirq

What About That Backdoor Part?
� Whenever an ICMP packet is received, our hook is

called

� Check for magic tag in ICMP header

� Two distinct types of packets
� “Install” packets contain userland shellcode

� “Trigger” packets cause shellcode to execute

� May be sent independently
� Install payload, trigger it repeatedly at later date

Backdoor Strategy
� Problem: ICMP handler also runs in softirq context

� Want userland code execution

� Phase 1: transition to kernel-mode process context

� Phase 2: hijack userland control flow

System Calls
� Userland process invokes a system call (read, write, fork,

etc.)

� Traditional mechanism is int 0x80 (more recently
everything uses systenter/syscall)

� Index into Interrupt Descriptor Table, check privileges

� Invokes handler specified by IDT (syscall entry point)

� Syscall entry point parses arguments, indexes into syscall
table, and calls appropriate system call handler

System Call Hijacking
� How to find system call table at runtime?

� sidt instruction retrieves IDT address

� Find handler for INT 0x80 (syscall)

� Scan function for byte pattern calling into syscall table

� Read-only syscall table
� More flipping write-protect bit in %cr0

� Store original syscall handler for later, write address of
hook into syscall table

54

Conclusion:

Local vs Global Solutions
� Systematic method for classifying exploits

� Exploit collection
� Shellcode extraction and decryption
� Shellcode comparison using exedit distance
� Group exploits with clustering

� Similarity between samples in computed phylogenies
corresponded well with observed differences

� Useful step toward automating malware classification

� Teşekkürler

� Thank you

� Efcharisto Poly

� Muito Obrigado

� Danke Schön

� Bedankt

� Labai Aciu

